If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-80x+30=0
a = 16; b = -80; c = +30;
Δ = b2-4ac
Δ = -802-4·16·30
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{70}}{2*16}=\frac{80-8\sqrt{70}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{70}}{2*16}=\frac{80+8\sqrt{70}}{32} $
| 32x+51=-15+35x | | 7-6x=-3x-8 | | 9(x-4)/3=3(x+3)/8 | | 5y-10=87 | | 0.5(x)(15-2x)=0 | | 7(3n+5)=6(9n+1)9 | | 20-x/20=2/5 | | -7(6x-1)+4=-42x+11 | | -2.5+4.8=1.2-7x | | 7-c=5+5c | | 0.5(x^)1/4))(15-2x)=0 | | 8x+12=6x-40 | | 4r-2(r+5)=26 | | 24-6w=7w+5 | | 2(a+3)=a+9 | | 5=6+6x | | 5/7p-2/7p-12=6 | | 4x+19+6x-9=180 | | 5+(6x-1)=11+5x | | (x^2)-(4/x^2)=3 | | 0.0169=c2 | | (5x-3)/(5)=(x+6)/(2) | | 2-3(4-x)=5(2-×)+4x | | 14x+4=10x | | 14x+6x=1200 | | x-28/30=100 | | 3^x=12 | | 5+(6x1)=11+5x | | 60=1/2(x+5)(3x+6) | | 7m+7=14 | | 5x-3+2x=3x+15 | | 12x^2+17x=6 |